
© Copyright IBM Corporation 2009 Trademarks
Scripting the Vim editor, Part 2: User-defined functions Page 1 of 15

Scripting the Vim editor, Part 2: User-defined functions
Create the fundamental building blocks of automation

Damian Conway, Dr.
CEO and Chief Trainer
Thoughtstream

07 July 2009

User-defined functions are an essential tool for decomposing an application into correct and
maintainable components, in order to manage the complexity of real-world programming tasks.
This article (the second in a series) explains how to create and deploy new functions in the
Vimscript language, giving several practical examples of why you might want to.

View more content in this series

About Vimscript and this series

Vimscript is a powerful scripting language that lets you modify and extend the Vim editor.
You can use it to create new tools, simplify common tasks, and even rework existing features
of the editor. This ongoing series of articles assumes some familiarity with the Vim editor.
You should also read "Scripting the Vim editor, Part 1," which covers variables, values, and
expressions, prerequisite knowledge for building functions.

User-defined functions

Ask Haskell or Scheme programmers, and they'll tell you that functions are the most important
feature of any serious programming language. Ask C or Perl programmers, and they'll tell you
exactly the same thing.

Functions provide two essential benefits to the serious programmer:

1. They enable complex computational tasks to be subdivided into pieces small enough to fit
comfortably into a single human brain.

2. They allow those subdivided pieces to be given logical and comprehensible names, so they
can be competently manipulated by a single human brain.

Vimscript is a serious programming language, so it naturally supports the creation of user-defined
functions. Indeed, it arguably has better support for user-defined functions than Scheme, C, or

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/linux/library/l-vim-script-1

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 2 of 15

Perl. This article explores the various features of Vimscript functions, and show how you can use
those features to enhance and extend Vim's built-in functionality in a maintainable way.

Declaring functions
Functions in Vimscript are defined using the function keyword, followed by the name of the
function, then the list of parameters (which is mandatory, even if the function takes no arguments).
The body of the function then starts on the next line, and continues until a matching endfunction
keyword is encountered. For example:

Listing 1. A correctly structured function
functionExpurgateText (text)
 let expurgated_text = a:text

 for expletive in ['cagal', 'frak', 'gorram', 'mebs', 'zarking']
 let expurgated_text
 \ = substitute(expurgated_text, expletive, '[DELETED]', 'g')
 endfor

 return expurgated_text
endfunction

The return value of the function is specified with a return statement. You can specify as many
separate return statements as you need. You can include none at all if the function is being used
as a procedure and has no useful return value. However, Vimscript functions always return a
value, so if no return is specified, the function automatically returns zero.

Function names in Vimscript must start with an uppercase letter:

Listing 2. Function names start with an uppercase letter
function SaveBackup ()
 let b:backup_count = exists('b:backup_count') ? b:backup_count+1 : 1
 return writefile(getline(1,'$'), bufname('%') . '_' . b:backup_count)
endfunction

nmap <silent> <C-B> :call SaveBackup()<CR>

This example defines a function that increments the value of the current buffer's b:backup_count
variable (or initializes it to 1, if it doesn't yet exist). The function then grabs every line in the current
file (getline(1,'$')) and calls the built-in writefile() function to write them to disk. The second
argument to writefile() is the name of the new file to be written; in this case, the name of the
current file (bufname('%')) with the counter's new value appended. The value returned is the
success/failure value of the call to writefile(). Finally, the nmap sets up CTRL-B to call the
function to create a numbered backup of the current file.

Instead of using a leading capital letter, Vimscript functions can also be declared with an explicit
scope prefix (like variables can be, as described in Part 1). The most common choice is s:, which
makes the function local to the current script file. If a function is scoped in this way, its name need
not start with a capital; it can be any valid identifier. However, explicitly scoped functions must
always be called with their scoping prefixes. For example:

http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 3 of 15

Listing 3. Calling a function with its scoping prefix
" Function scoped to current script file...
function s:save_backup ()
 let b:backup_count = exists('b:backup_count') ? b:backup_count+1 : 1
 return writefile(getline(1,'$'), bufname('%') . '_' . b:backup_count)
endfunction

nmap <silent> <C-B> :call s:save_backup()<CR>

Redeclarable functions
Function declarations in Vimscript are runtime statements, so if a script is loaded twice, any
function declarations in that script will be executed twice, re-creating the corresponding functions.

Redeclaring a function is treated as a fatal error (to prevent collisions where two separate scripts
accidentally declare functions of the same name). This makes it difficult to create functions in
scripts that are designed to be loaded repeatedly, such as custom syntax-highlighting scripts.

So Vimscript provides a keyword modifier (function!) that allows you to indicate that a function
declaration may be safely reloaded as often as required:

Listing 4. Indicating that a function declaration may be safely reloaded
function! s:save_backup ()
 let b:backup_count = exists('b:backup_count') ? b:backup_count+1 : 1
 return writefile(getline(1,'$'), bufname('%') . '_' . b:backup_count)
endfunction

No redeclaration checks are performed on functions defined with this modified keyword, so it is
best used with explicitly scoped functions (in which case the scoping already ensures that the
function won't collide with one from another script).

Calling functions
To call a function and use its return value as part of a larger expression, simply name it and
append a parenthesized argument list:

Listing 5. Using a function's return value
"Clean up the current line...
let success = setline('.', ExpurgateText(getline('.')))

Note, however, that, unlike C or Perl, Vimscript does not allow you to throw away the return value
of a function without using it. So, if you intend to use the function as a procedure or subroutine and
ignore its return value, you must prefix the invocation with the call command:

Listing 6. Using a function without using its return value
"Checkpoint the text...
call SaveBackup()

Otherwise, Vimscript will assume that the function call is actually a built-in Vim command and will
most likely complain that no such command exists. We'll look at the difference between functions
and commands in a future article in this series.

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 4 of 15

Parameter lists
Vimscript allows you to define both explicit parameters and variadic parameter lists, and even
combinations of the two.

You can specify up to 20 explicitly named parameters immediately after the declaration of the
subroutine's name. Once specified, the corresponding argument values for the current call can be
accessed within the function by prefixing an a: to the parameter name:

Listing 7. Accessing argument values within the function
function PrintDetails(name, title, email)
 echo 'Name: ' a:title a:name
 echo 'Contact:' a:email
endfunction

If you don't know how many arguments a function may be given, you can specify a variadic
parameter list, using an ellipsis (...) instead of named parameters. In this case, the function
may be called with as many arguments as you wish, and those values are collected into a single
variable: an array named a:000. Individual arguments are also given positional parameter names:
a:1, a:2, a:3, etc. The number of arguments is available as a:0. For example:

Listing 8. Specifying and using a variadic parameter list
function Average(...)
 let sum = 0.0

 for nextval in a:000"a:000 is the list of arguments
 let sum += nextval
 endfor

 return sum / a:0"a:0 is the number of arguments
endfunction

Note that, in this example, sum must be initialized to an explicit floating-point value; otherwise, all
the subsequent computations will be done using integer arithmetic.

Combining named and variadic parameters
Named and variadic parameters can be used in the same function, simply by placing the variadic
ellipsis after the list of named parameters.

For example, suppose you wanted to create a CommentBlock() function that was passed a string
and formatted it into an appropriate comment block for various programming languages. Such a
function would always require the caller to supply the string to be formatted, so that parameter
should be explicitly named. But you might prefer that the comment introducer, the "boxing"
character, and the width of the comment all be optional (with sensible defaults when omitted).
Then you could call:

Listing 9. A simple CommentBlock function call
call CommentBlock("This is a comment")

and it would return a multi-line string containing:

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 5 of 15

Listing 10. The CommentBlock return
//*******************
// This is a comment
//*******************

Whereas, if you provided extra arguments, they would specify non-default values for the comment
introducer, the "boxing" character, and the comment width. So this call:

Listing 11. A more involved CommentBlock function call
call CommentBlock("This is a comment", '#', '=', 40)

would return the string:

Listing 12. The CommentBlock return
#==
This is a comment
#==

Such a function might be implemented like so:

Listing 13. The CommentBlock implementation
function CommentBlock(comment, ...)
 "If 1 or more optional args, first optional arg is introducer...
 let introducer = a:0 >= 1 ? a:1 : "//"

 "If 2 or more optional args, second optional arg is boxing character...
 let box_char = a:0 >= 2 ? a:2 : "*"

 "If 3 or more optional args, third optional arg is comment width...
 let width = a:0 >= 3 ? a:3 : strlen(a:comment) + 2

 " Build the comment box and put the comment inside it...
 return introducer . repeat(box_char,width) . "\<CR>"
 \ . introducer . " " . a:comment . "\<CR>"
 \ . introducer . repeat(box_char,width) . "\<CR>"
endfunction

If there is at least one optional argument (a:0 >= 1), the introducer parameter is assigned that
first option (that is, a:1); otherwise, it is assigned a default value of "//". Likewise, if there are
two or more optional arguments (a:0 >= 2), the box_char variable is assigned the second option
(a:2), or else a default value of "*". If three or more optional arguments are supplied, the third
option is assigned to the width variable. If no width argument is given, the appropriate width is
autocomputed from the comment argument itself (strlen(a:comment)+2).

Finally, having resolved all the parameter values, the top and bottom lines of the comment box
are constructed using the leading comment introducer, followed by the appropriate number
of repetitions of the boxing character (repeat(box_char,width)), with the comment text itself
sandwiched between them.

Of course, to use this function, you'd need to invoke it somehow. An insertion map is probably the
ideal way to do that:

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 6 of 15

Listing 14. Invoking the function using an insertion map
"C++/Java/PHP comment...
imap <silent> /// <C-R>=CommentBlock(input("Enter comment: "))<CR>

"Ada/Applescript/Eiffel comment...
imap <silent> --- <C-R>=CommentBlock(input("Enter comment: "),'--')<CR>

"Perl/Python/Shell comment...
imap <silent> ### <C-R>=CommentBlock(input("Enter comment: "),'#','#')<CR>

In each of these maps, the built-in input() function is first called to request that the user type in
the text of the comment. The CommentBlock() function is then called to convert that text into a
comment block. Finally, the leading <C-R>= inserts the resulting string.

Note that the first mapping passes only a single argument, so it defaults to using // as its
comment marker. The second and third mappings pass a second argument to specify # or -- as
their respective comment introducers. The final mapping also passes a third argument, to make
the "boxing" character match its comment introducer.

Functions and line ranges
You can invoke any standard Vim command—including call—with a preliminary line range, which
causes the command to be repeated once for every line in the range:

"Delete every line from the current line (.) to the end-of-file ($)...

:.,$delete

"Replace "foo" with "bar" everywhere in lines 1 to 10

:1,10s/foo/bar/

"Center every line from five above the current line to five below it...

:-5,+5center

You can type :help cmdline-ranges in any Vim session to learn more about this facility.

In the case of the call command, specifying a range causes the requested function to be called
repeatedly: once for each line in the range. To see why that's useful, let's consider how to write a
function that converts any "raw" ampersands in the current line to proper XML & entities, but
that is also smart enough to ignore any ampersand that is already part of some other entity. That
function could be implemented like so:

Listing 15. Function to convert ampersands
function DeAmperfy()
 "Get current line...
 let curr_line = getline('.')

 "Replace raw ampersands...
 let replacement = substitute(curr_line,'&\(\w\+;\)\@!','&','g')

 "Update current line...
 call setline('.', replacement)
endfunction

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 7 of 15

The first line of DeAmperfy() grabs the current line from the editor buffer (getline('.')). The
second line looks for any & in that line that isn't followed by an identifier and a colon, using the
negative lookahead pattern '&\(\w\+;\)\@!'(see :help \@! for details). The substitute()
call then replaces all such "raw" ampersands with the XML entity &. Finally, the third line of
DeAmperfy()updates the current line with the modified text.

If you called this function from the command line:

:call DeAmperfy()

it would perform the replacement on the current line only. But if you specified a range before the
call:

:1,$call DeAmperfy()

then the function would be called once for each line in the range (in this case, for every line in the
file).

Internalizing function line ranges
This call-the-function-repeatedly-for-each-line behavior is a convenient default. However,
sometimes you might prefer to specify a range but then have the function called only once, and
then handle the range semantics within the function itself. That's also easy in Vimscript. You simply
append a special modifier (range) to the function declaration:

Listing 16. Range semantics within a function
function DeAmperfyAll() range"Step through each line in the range...
 for linenum in range(a:firstline, a:lastline)
 "Replace loose ampersands (as in DeAmperfy())...
 let curr_line = getline(linenum)
 let replacement = substitute(curr_line,'&\(\w\+;\)\@!','&','g')
 call setline(linenum, replacement)
 endfor

 "Report what was done...
 if a:lastline > a:firstline
 echo "DeAmperfied" (a:lastline - a:firstline + 1) "lines"
 endif
endfunction

With the range modifier specified after the parameter list, any time DeAmperfyAll() is called with a
range such as:

:1,$call DeAmperfyAll()

then the function is invoked only once, and two special arguments, a:firstline and a:lastline,
are set to the first and last line numbers in the range. If no range is specified, both a:firstline
and a:lastline are set to the current line number.

The function first builds a list of all the relevant line numbers (range(a:firstline, a:lastline)).
Note that this call to the built-in range() function is entirely unrelated to the use of the range

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 8 of 15

modifier as part of the function declaration. The range() function is simply a list constructor, very
similar to the range() function in Python, or the .. operator in Haskell or Perl.

Having determined the list of line numbers to be processed, the function uses a for loop to step
through each:

for linenum in range(a:firstline, a:lastline)

and updates each line accordingly (just as the original DeAmperfy() did).

Finally, if the range covers more than a single line (in other words, if a:lastline > a:firstline),
the function reports how many lines were updated.

Visual ranges

Once you have a function call that can operate on a range of lines, a particularly useful technique
is to call that function via Visual mode (see :help Visual-mode for details).

For example, if your cursor is somewhere in a block of text, you could encode all the ampersands
anywhere in the surrounding paragraph with:

Vip:call DeAmperfyAll()

Typing V in Normal mode swaps you into Visual mode. The ip then causes Visual mode to
highlight the entire paragraph you're inside. Then, the : swaps you to Command mode and
automatically sets the command's range to the range of lines you just selected in Visual mode. At
this point you call DeAmperfyAll() to deamperfy all of them.

Note that, in this instance, you could get the same effect with just:

Vip:call DeAmperfy()

The only difference is that the DeAmperfy() function would be called repeatedly: once for each line
the Vip highlighted in Visual mode.

A function to help you code

Most user-defined functions in Vimscript require very few parameters, and often none at all. That's
because they usually get their data directly from the current editor buffer and from contextual
information (such as the current cursor position, the current paragraph size, the current window
size, or the contents of the current line).

Moreover, functions are often far more useful and convenient when they obtain their data
through context, rather than through their argument lists. For example, a common problem when
maintaining source code is that assignment operators fall out of alignment as they accumulate,
which reduces the readability of the code:

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 9 of 15

Listing 17. Assignment operators out of alignment
let applicants_name = 'Luke'
let mothers_maiden_name = 'Amidala'
let closest_relative = 'sister'
let fathers_occupation = 'Sith'

Realigning them manually every time a new statement is added can be tedious:

Listing 18. Manually realigned assignment operators
let applicants_name = 'Luke'
let mothers_maiden_name = 'Amidala'
let closest_relative = 'sister'
let fathers_occupation = 'Sith'

To reduce the tedium of that everyday coding task, you could create a key-mapping (such as
;=) that selects the current block of code, locates any lines with assignment operators, and
automatically aligns those operators. Like so:

Listing 19. Function to align assignment operators
function AlignAssignments ()
 "Patterns needed to locate assignment operators...
 let ASSIGN_OP = '[-+*/%|&]\?=\@<!=[=~]\@!'
 let ASSIGN_LINE = '^\(.\{-}\)\s*\(' . ASSIGN_OP . '\)'

 "Locate block of code to be considered (same indentation, no blanks)
 let indent_pat = '^' . matchstr(getline('.'), '^\s*') . '\S'
 let firstline = search('^\%('. indent_pat . '\)\@!','bnW') + 1
 let lastline = search('^\%('. indent_pat . '\)\@!', 'nW') - 1
 if lastline < 0
 let lastline = line('$')
 endif

 "Find the column at which the operators should be aligned...
 let max_align_col = 0
 let max_op_width = 0
 for linetext in getline(firstline, lastline)
 "Does this line have an assignment in it?
 let left_width = match(linetext, '\s*' . ASSIGN_OP)

 "If so, track the maximal assignment column and operator width...
 if left_width >= 0
 let max_align_col = max([max_align_col, left_width])

 let op_width = strlen(matchstr(linetext, ASSIGN_OP))
 let max_op_width = max([max_op_width, op_width+1])
 endif
 endfor

 "Code needed to reformat lines so as to align operators...
 let FORMATTER = '\=printf("%-*s%*s", max_align_col, submatch(1),
 \ max_op_width, submatch(2))'

 " Reformat lines with operators aligned in the appropriate column...
 for linenum in range(firstline, lastline)
 let oldline = getline(linenum)
 let newline = substitute(oldline, ASSIGN_LINE, FORMATTER, "")
 call setline(linenum, newline)
 endfor
endfunction

nmap <silent> ;= :call AlignAssignments()<CR>

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 10 of 15

The AlignAssignments() function first sets up two regular expressions (see :help pattern for the
necessary details of Vim's regex syntax):

let ASSIGN_OP = '[-+*/%|&]\?=\@<!=[=~]\@!'
let ASSIGN_LINE = '^\(.\{-}\)\s*\(' . ASSIGN_OP . '\)'

The pattern in ASSIGN_OP matches any of the standard assignment operators: =, +=, -=, *=,
etc. but carefully avoids matching other operators that contain =, such as == and =~. If your
favorite language has other assignment operators (such as .= or ||= or ^=), you could extend
the ASSIGN_OP regex to recognize those as well. Alternatively, you could redefine ASSIGN_OP to
recognize other types of "alignables," such as comment introducers or column markers, and align
them instead.

The pattern in ASSIGN_LINE matches only at the start of a line (^), matching a minimal number of
characters (.\{-}), then any whitespace (\s*), then an assignment operator.

Note that both the initial "minimal number of characters" subpattern and the operator subpattern
are specified within capturing parentheses: \(...\). The substrings captured by those two
components of the regex will later be extracted using calls to the built-in submatch() function;
specifically, by calling submatch(1) to extract everything before the operator, and submatch(2) to
extract the operator itself.

AlignAssignments() then locates the range of lines on which it will operate:

let indent_pat = '^' . matchstr(getline('.'), '^\s*') . '\S'
let firstline = search('^\%('. indent_pat . '\)\@!','bnW') + 1
let lastline = search('^\%('. indent_pat . '\)\@!', 'nW') - 1
if lastline < 0
 let lastline = line('$')
endif

In earlier examples, functions have relied on an explicit command range or a Visual mode
selection to determine which lines they operate on, but this function computes its own range
directly. Specifically, it first calls the built-in matchstr() function to determine what leading
whitespace ('^\s*') appears at the start of the current line (getline('.'). It then builds a new
regular expression in indent_pat that matches exactly the same sequence of whitespace at the
start of any non-empty line (hence the trailing '\S').

AlignAssignments() then calls the built-in search() function to search upwards (using the flags
'bnW') and locate the first line above the cursor that does not have precisely the same indentation.
Adding 1 to this line number gives the start of the range of interest, namely, the first contiguous line
with the same indentation as the current line.

A second call to search() then searches downwards ('nW') to determine lastline: the number of
the final contiguous line with the same indentation. In this second case, the search might hit the
end of the file without finding a differently indented line, in which case search() would return -1.
To handle this case correctly, the following if statement would explicitly set lastline to the line
number of the end of file (that is, to the line number returned by line('$')).

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 11 of 15

The result of these two searches is that AlignAssignments() now knows the full range of lines
immediately above or below the current line that all have precisely the same indentation as the
current line. It uses this information to ensure that it aligns only those assignment statements at
the same scoping level in the same block of code. Unless, of course, the indentation of your code
doesn't correctly reflect its scope, in which case you fully deserve the formatting catastrophe about
to befall you.

The first for loop in AlignAssignments() determines the column in which the assignment
operators should be aligned. This is done by walking through the list of lines in the selected range
(the lines retrieved by getline(firstline, lastline)) and checking whether each line contains
an assignment operator (possibly preceded by whitespace):

let left_width = match(linetext, '\s*' . ASSIGN_OP)

If there is no operator in the line, the built-in match() function will fail to find a match and will return
-1. In that case, the loop simply skips on to the next line. If there is an operator, match() will return
the (positive) index at which that operator appears. The if statement then uses the built-in max()
function to determine whether this latest column position is further right than any previously located
operator, thereby tracking the maximum column position required to align all the assignments in
the range:

let max_align_col = max([max_align_col, left_width])

The remaining two lines of the if use the built-in matchstr() function to retrieve the actual
operator, then the built-in strlen() to determine its length (which will be 1 for a "=" but 2 for '+=',
'-=', etc.) The max_op_width variable is then used to track the maximum width required to align
the various operators in the range:

let op_width = strlen(matchstr(linetext, ASSIGN_OP))
let max_op_width = max([max_op_width, op_width+1])

Once the location and width of the alignment zone have been determined, all that remains is to
iterate through the lines in the range and reformat them accordingly. To do that reformatting, the
function uses the built-in printf() function. This function is very useful, but also very badly named.
It is not the same as the printf function in C or Perl or PHP. It is, in fact, the same as the sprintf
function in those languages. That is, in Vimscript, printf doesn't print a formatted version of its list
of data arguments; it returns a string containing a formatted version of its list of data arguments.

Ideally, in order to reformat each line, AlignAssignments() would use the built-in substitute()
function, and replace everything up to the operator with a printf'd rearrangement of that text.
Unfortunately, substitute() expects a fixed string as its replacement value, not a function call.

So, in order to use a printf() to reformat each replacement text, you need to use the
special embedded replacement form: "\=expr". The leading \= in the replacement string tells
substitute() to evaluate the expression that follows and use the result as the replacement text.
Note that this is similar to the <C-R>= mechanism in Insert mode, except this magic behavior only

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 12 of 15

works for the replacement string of the built-in substitute() function (or in the standard :s/.../.../
Vim command).

In this example, the special replacement form will be the same printf for every line, so it is pre-
stored in the FORMATTER variable before the second for loop begins:

let FORMATTER = '\=printf("%-*s%*s", max_align_col, submatch(1),
\ max_op_width, submatch(2))'

When it is eventually called by substitute(), this embedded printf() will left-justify (using a
%-*s placeholder) everything to the left of the operator (submatch(1)) and place the result in a
field that's max_align_col characters wide. It will then right-justify (using a %*s) the operator itself
(submatch(2)) into a second field that's max_op_width characters wide. See :help printf() for
details on how the - and * options modify the two %s format specifiers used here.

With this formatter now available, the second for loop can finally iterate through the full range of
line numbers, retrieving the corresponding text buffer contents one line at a time:

for linenum in range(firstline, lastline)
 let oldline = getline(linenum)

The loop then uses substitute() to transform those contents, by matching everything up to and
including any assignment operator (using the pattern in ASSIGN_LINE) and replacing that text with
the result of the printf() call (as specified by FORMATTER):

 let newline = substitute(oldline, ASSIGN_LINE, FORMATTER, "")
 call setline(linenum, newline)
endfor

Once the for loop has iterated all the lines, any assignment operators within them will now be
aligned correctly. All that remains is to create a key-mapping to invoke AlignAssignments(), like
so:

nmap <silent> ;= :call AlignAssignments()<CR>

Looking ahead
Functions are an essential tool for decomposing an application into correct and maintainable
components, in order to manage the complexity of real-world Vim programming tasks.

Vimscript allows you to define functions with fixed or variadic parameter lists, and to have them
interact either automatically or in user-controlled ways with ranges of lines in the editor's text
buffer. Functions can call back to Vim's built-in features (for example, to search() or substitute()
text), and they can also directly access editor state information (such as determining the current
line the cursor is on via line('.')) or interact with any text buffer currently being edited (via
getline() and setline()).

This is undoubtedly a powerful facility, but our ability to programmatically manipulate state and
content is always limited by how cleanly and accurately we can represent the data on which our

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 13 of 15

code operates. So far in this series of articles, we've been restricted to the use of single scalar
values (numbers, strings, and booleans). In the next two articles, we'll explore the use of much
more powerful and convenient data structures: ordered lists and random-access dictionaries.

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 2: User-defined functions Page 14 of 15

Resources

Learn

• Start with "Scripting the Vim editor, Part 1: Variables, values, and
expressions" (developerWorks, May 2009) to learn Vimscript, the embedded language for
extending the Vim editor. Create new tools, simplify common tasks, and redesign and replace
existing editor features.

• To learn more about the Vim editor and its many commands, see:
• The Vim homepage
• The online book A Byte of Vim
• Various hardcopy books on Vim
• Vim's own manual
• Steve Oualline's Vim Cookbook

• For more extensive examples of Vim scripting, see:
• The Vim Tips wiki
• The Vimscript archive

• In the developerWorks Linux zone, find more resources for Linux developers, and scan our
most popular articles and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.
• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Start at the Vim distributions downloads page to upgrade to the latest version of Vim for your
platform.

• With IBM trial software, available for download directly from developerWorks, build your next
development project on Linux.

Discuss

• Get involved in the My developerWorks community; with your personal profile and custom
home page, you can tailor developerWorks to your interests and interact with other
developerWorks users.

http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.vim.org/
http://www.swaroopch.com/notes/Vim
http://iccf-holland.org/click5.html
http://vimdoc.sourceforge.net/
http://www.oualline.com/vim-cook.html
http://vim.wikia.com/
http://vim.sourceforge.net/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.vim.org/download.php
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 2: User-defined functions Page 15 of 15

About the author

Damian Conway, Dr.

Damian Conway is an Adjunct Associate Professor of Computer Science at Monash
University, Australia, and CEO of Thoughtstream, an international IT training
company. He has been a daily vi user for well over a quarter of a century, and there
now seems very little hope he will ever conquer the addiction.

© Copyright IBM Corporation 2009
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://damian.conway.org/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	User-defined functions
	Declaring functions
	Redeclarable functions
	Calling functions
	Parameter lists
	Combining named and variadic parameters

	Functions and line ranges
	Internalizing function line ranges
	Visual ranges

	A function to help you code
	Looking ahead
	Resources
	About the author
	Trademarks

