
© Copyright IBM Corporation 2010 Trademarks
Scripting the Vim editor, Part 3: Built-in lists Page 1 of 20

Scripting the Vim editor, Part 3: Built-in lists
Explore Vimscript's support for lists and arrays

Damian Conway, Dr.
CEO and Chief Trainer
Thoughtstream

27 January 2010

Vimscript provides excellent support for operating on collections of data, a cornerstone of
programming. In this third article in the series, learn how to use Vimscript's built-in lists to ease
everyday operations such as reformatting lists, filtering sequences of filenames, and sorting
sets of line numbers. You'll also walk through examples that demonstrate the power of lists
to extend and enhance two common uses of Vim: creating a user-defined function to align
assignment operators, and improving the built-in text completions mechanism.

View more content in this series

The heart of all programming is the creation and manipulation of data structures. So far in this
series, we’ve considered only Vimscript’s scalar data types (strings, numbers, and booleans) and
the scalar variables that store them. But the true power of programming Vim becomes apparent
when its scripts can operate on entire collections of related data at once: reformatting lists of text
lines, accessing multidimensional tables of configuration data, filtering sequences of filenames,
and sorting sets of line numbers.

In this article, we’ll explore Vimscript’s excellent support for lists and the arrays that store them,
as well as the language's many built-in functions that make using lists so easy, efficient, and
maintainable.

Lists in Vimscript

In Vimscript, a list is a sequence of scalar values: strings, numbers, references, or any mixture
thereof.

Vimscript lists are arguably misnamed. In most languages, a "list" is a value (rather than a
container), an immutable ordered sequence of simpler values. In contrast, lists in Vimscript are
mutable and in many ways far more like (references to) anonymous-array data structures. A
Vimscript variable that is storing a list is, for most purposes, an array.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 2 of 20

You create a list by placing a comma-separated sequence of scalar values inside a pair of square
brackets. List elements are indexed from zero, and are accessed and modified via the usual
notation: postfix square brackets with the index inside them:

Listing 1. Creating a list
let data = [1,2,3,4,5,6,"seven"]
echo data[0] |" echoes: 1
let data[1] = 42 |" [1,42,3,4,5,6,"seven"]
let data[2] += 99 |" [1,42,102,4,5,6,"seven"]
let data[6] .= ' samurai' |" [1,42,102,4,5,6,"seven samurai"]

You can also use indices less than zero, which then count backward from the end of the list. So the
final statement of the previous example could also be written like so:

let data[-1] .= ' samurai'

As in most other dynamic languages, Vimscript lists require no explicit memory management: they
automatically grow or shrink to accommodate the elements they’re asked to store, and they’re
automatically garbage-collected when the program no longer requires them.

Nested lists
In addition to storing strings or numbers, a list can also store other lists. As in C, C++, or Perl, if a
list contains other lists, it acts like a multidimensional array. For example:

Listing 2. Creating a nested list
let pow = [
\ [1, 0, 0, 0],
\ [1, 1, 1, 1],
\ [1, 2, 4, 8],
\ [1, 3, 9, 27],
\]
" and later...
echo pow[x][y]

Here, the first indexing operation (pow[x]) returns one of the elements of the list in pow. That
element is itself a list, so the second indexing ([y]) returns one of the nested list’s elements.

List assignments and aliasing
When you assign any list to a variable, you’re really assigning a pointer or reference to the list.
So, assigning from one list variable to another causes them to both point at or refer to the same
underlying list. This usually leads to unpleasant action-at-a-distance surprises like the one you see
here:

Listing 3. Assign with caution
let old_suffixes = ['.c', '.h', '.py']
let new_suffixes = old_suffixes
let new_suffixes[2] = '.js'
echo old_suffixes |" echoes: ['.c', '.h', '.js']
echo new_suffixes |" echoes: ['.c', '.h', '.js']

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 3 of 20

To avoid this aliasing effect, you need to call the built-in copy() function to duplicate the list, and
then assign the copy instead:

Listing 4. Copying a list
let old_suffixes = ['.c', '.h', '.py']
let new_suffixes = copy(old_suffixes)
let new_suffixes[2] = '.js'
echo old_suffixes |" echoes: ['.c', '.h', '.py']
echo new_suffixes |" echoes: ['.c', '.h', '.js']

Note, however, that copy() only duplicates the top level of the list. If any of those values is itself
a nested list, it’s really a pointer/reference to some separate external list. In that case, copy() will
duplicate that pointer/reference, and the nested list will still be shared by both the original and the
copy, as shown here:

Listing 5. Shallow copy
let pedantic_pow = copy(pow)
let pedantic_pow[0][0] = 'indeterminate'
" also changes pow[0][0] due to shared nested list

If that’s not what you want (and it’s almost always not what you want), then you can use the built-in
deepcopy() function instead, which duplicates any nested data structure "all the way down":

Listing 6. Deep copy
let pedantic_pow = deepcopy(pow)
let pedantic_pow[0][0] = 'indeterminate'
" pow[0][0] now unaffected; no nested list is shared

Basic list operations
Most of Vim’s list operations are provided via built-in functions. The functions usually take a list and
return some property of it:

Listing 7. Finding size, range, and indexes
" Size of list...
let list_length = len(a_list)
let list_is_empty = empty(a_list) " same as: len(a_list) == 0" Numeric minima and maxima...
let greatest_elem = max(list_of_numbers)
let least_elem = min(list_of_numbers)

" Index of first occurrence of value or pattern in list...
let value_found_at = index(list, value) " uses == comparison
let pat_matched_at = match(list, pattern) " uses =~ comparison

The range() function can be used to generate a list of integers. If called with a single-integer
argument, it generates a list from zero to one less than that argument. Called with two arguments,
it generates an inclusive list from the first to the second. With three arguments, it again generates
an inclusive list, but increments each successive element by the third argument:

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 4 of 20

Listing 8. Generating a list using the range() function
let sequence_of_ints = range(max) " 0...max-1
let sequence_of_ints = range(min, max) " min...max
let sequence_of_ints = range(min, max, step) " min, min+step,...max

You can also generate a list by splitting a string into a sequence of "words":

Listing 9. Generating a list by splitting text
let words = split(str) " split on whitespace
let words = split(str, delimiter_pat) " split where pattern matches

To reverse that, you can join the list back together:

Listing 10. Joining the elements of a list
let str = join(list) " use a single space char to join
let str = join(list, delimiter) " use delimiter string to join

Other list-related procedures
You can explore the many other list-related functions by typing :help function-list in any
Vim session, then scrolling down to "List manipulation"). Most of these functions are actually
procedures, however, because they modify their list argument in-place.

For example, to insert a single extra element into a list, you can use insert() or add():

Listing 11. Adding a value to a list
call insert(list, newval) " insert new value at start of list
call insert(list, newval, idx) " insert new value before index idx
call add(list, newval) " append new value to end of list

You can insert a list of values with extend():

Listing 12. Adding a set of values to a list
call extend(list, newvals) " append new values to end of list
call extend(list, newvals, idx) " insert new values before index idx

Or remove specified elements from a list:

Listing 13. Removing elements
call remove(list, idx) " remove element at index idx
call remove(list, from, to) " remove elements in range of indices

Or sort or reverse a list:

Listing 14. Sorting or reversing a list
call sort(list) " re-order the elements of list alphabetically

call reverse(list) " reverse order of elements in list

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 5 of 20

A common mistake with list procedures
Note that all list-related procedures also return the list they’ve just modified, so you could write:

let sorted_list = reverse(sort(unsorted_list))

Doing so would almost always be a serious mistake, however, because even when their return
values are used in this way, list-related functions still modify their original argument. So, in the
previous example, the list in unsorted_list would also be sorted and reversed. Moreover,
unsorted_list and sorted_list would now be aliased to the same sorted-and-reversed list (as
described under "List assignments and aliasing").

This is highly counterintuitive for most programmers, who typically expect functions like sort and
reverse to return modified copies of the original data, without changing the original itself.

Vimscript lists simply don’t work that way, so it’s important to cultivate good coding habits that will
help you avoid nasty surprises. One such habit is to only ever call sort(), reverse(), and the like,
as pure functions, and to always pass a copy of the data to be modified. You can use the built-in
copy() function for this purpose:

let sorted_list = reverse(sort(copy(unsorted_list)))

Filtering and transforming lists
Two particularly useful procedural list functions are filter() and map(). The filter() function
takes a list and removes those elements that fail to meet some specified criterion:

let filtered_list = filter(copy(list), criterion_as_str)

The call to filter() converts the string that is passed as its second argument to a piece of code,
which it then applies to each element of the list that is passed as its first argument. In other words,
it repeatedly performs an eval() on its second argument. For each evaluation, it passes the next
element of its first argument to the code, via the special variable v:val. If the result of the evaluated
code is zero (that is, false), the corresponding element is removed from the list.

For example, to remove any negative numbers from a list, type:

let positive_only = filter(copy(list_of_numbers), 'v:val >= 0')

To remove any names from a list that contain the pattern /.*nix/, type:

let non_starnix = filter(copy(list_of_systems), 'v:val !~ ".*nix"')

The map() function
The map() function is similar to filter(), except that instead of removing some elements, it
replaces every element with a user-specified transformation of its original value. The syntax is:

let transformed_list = map(copy(list), transformation_as_str)

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 6 of 20

Like filter(), map() evaluates the string passed as its second argument, passing each list
element in turn, via v:val. But, unlike filter(), a map() always keeps every element of a list,
replacing each value with the result of evaluating the code on that value.

For example, to increase every number in a list by 10, type:

let increased_numbers = map(copy(list_of_numbers), 'v:val + 10')

Or to capitalize each word in a list: type:

let LIST_OF_WORDS = map(copy(list_of_words), 'toupper(v:val)')

Once again, remember that filter() and map() modify their first argument in-place. A very
common error when using them is to write something like:

let squared_values = map(values, 'v:val * v:val')

instead of:

let squared_values = map(copy(values), 'v:val * v:val')

List concatenation

You can concatenate lists with the + and += operators, like so:

Listing 15. Concatenating lists
let activities = ['sleep', 'eat'] + ['game', 'drink']

let activities += ['code']

Remember that both sides must be lists. Don’t think of += as "append"; you can’t use it to add a
single value directly to the end of a list:

Listing 16. Concatenation needs two lists
let activities += 'code'
" Error: Wrong variable type for +=

Sublists
You can extract part of a list by specifying a colon-separated range in the square brackets of an
indexing operation. The limits of the range can be constants, variables with numeric values, or any
numeric expression:

Listing 17. Extracting parts of a list
let week = ['Sun','Mon','Tue','Wed','Thu','Fri','Sat']
let weekdays = week[1:5]
let freedays = week[firstfree : lastfree-2]

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 7 of 20

If you omit the starting index, the sublist automatically starts at zero; if you omit the ending index,
the sublist finishes at the last element. For example, to split a list into two (near-)equal halves,
type:

Listing 18. Splitting a list into two sublists
let middle = len(data)/2
let first_half = data[: middle-1] " same as: data[0 : middle-1]
let second_half = data[middle :] " same as: data[middle : len(data)-1]

Example 1: Revisiting autoalignments
The full power and utility of lists is best illustrated by example. Let's start by improving an existing
tool.

The second article in this series explored a user-defined function called AlignAssignments(),
which lined up assignment operators in elegant columns. Listing 19 reproduces that function.

Listing 19. The original AlignAssignments() function
function AlignAssignments ()
 " Patterns needed to locate assignment operators...
 let ASSIGN_OP = '[-+*/%|&]\?=\@<!=[=~]\@!'
 let ASSIGN_LINE = '^\(.\{-}\)\s*\(' . ASSIGN_OP . '\)'

 " Locate block of code to be considered (same indentation, no blanks)
 let indent_pat = '^' . matchstr(getline('.'), '^\s*') . '\S'
 let firstline = search('^\%('. indent_pat . '\)\@!','bnW') + 1
 let lastline = search('^\%('. indent_pat . '\)\@!', 'nW') - 1
 if lastline < 0
 let lastline = line('$')
 endif

 " Find the column at which the operators should be aligned...
 let max_align_col = 0
 let max_op_width = 0
 for linetext in getline(firstline, lastline)
 " Does this line have an assignment in it?
 let left_width = match(linetext, '\s*' . ASSIGN_OP)

 " If so, track the maximal assignment column and operator width...
 if left_width >= 0
 let max_align_col = max([max_align_col, left_width])

 let op_width = strlen(matchstr(linetext, ASSIGN_OP))
 let max_op_width = max([max_op_width, op_width+1])
 endif
 endfor

 " Code needed to reformat lines so as to align operators...
 let FORMATTER = '\=printf("%-*s%*s", max_align_col, submatch(1),
 \ max_op_width, submatch(2))'

 " Reformat lines with operators aligned in the appropriate column...
 for linenum in range(firstline, lastline)
 let oldline = getline(linenum)
 let newline = substitute(oldline, ASSIGN_LINE, FORMATTER, "")
 call setline(linenum, newline)
 endfor
endfunction

http://www.ibm.com/developerworks/linux/library/l-vim-script-2/index.html

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 8 of 20

One deficiency of this function is that it has to grab each line being processed twice: once (in the
first for loop) to gather information on the paragraph’s existing structure, and a second time (in the
final for loop) to adjust each line to fit the new structure.

This duplicated effort is clearly suboptimal. It would be better to store the lines in some internal
data structure and reuse them directly. Knowing what you do about lists, it is indeed possible to
rewrite AlignAssignments() more efficiently and more cleanly. Listing 20 shows a new version of
the function that takes advantage of several list data structures and the various list-manipulation
functions described earlier.

Listing 20. An updated AlignAssignments() function
function! AlignAssignments ()
 " Patterns needed to locate assignment operators...
 let ASSIGN_OP = '[-+*/%|&]\?=\@<!=[=~]\@!'
 let ASSIGN_LINE = '^\(.\{-}\)\s*\(' . ASSIGN_OP . '\)\(.*\)$'

 " Locate block of code to be considered (same indentation, no blanks)
 let indent_pat = '^' . matchstr(getline('.'), '^\s*') . '\S'
 let firstline = search('^\%('. indent_pat . '\)\@!','bnW') + 1
 let lastline = search('^\%('. indent_pat . '\)\@!', 'nW') - 1
 if lastline < 0
 let lastline = line('$')
 endif

 " Decompose lines at assignment operators...
 let lines = []
 for linetext in getline(firstline, lastline)
 let fields = matchlist(linetext, ASSIGN_LINE)
 call add(lines, fields[1:3])
 endfor

 " Determine maximal lengths of lvalue and operator...
 let op_lines = filter(copy(lines),'!empty(v:val)')
 let max_lval = max(map(copy(op_lines), 'strlen(v:val[0])')) + 1
 let max_op = max(map(copy(op_lines), 'strlen(v:val[1])'))

 " Recompose lines with operators at the maximum length...
 let linenum = firstline
 for line in lines
 if !empty(line)
 let newline
 \ = printf("%-*s%*s%s", max_lval, line[0], max_op, line[1], line[2])
 call setline(linenum, newline)
 endif
 let linenum += 1
 endfor
endfunction

Note that the first two code blocks within the new function are almost identical to those in the
original. As before, they locate the range of lines whose assignments are to be aligned, based on
the current indentation of the text.

The changes begin in the third code block, which uses the two-argument form of the built-in
getline() function to return a list of all the lines in the range to be realigned.

The for loop then iterates through each line, matching it against the regular expression in
ASSIGN_LINE using the built-in matchlist() function:

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 9 of 20

let fields = matchlist(linetext, ASSIGN_LINE)

The call to matchlist() returns a list of all the fields captured by the regex (that is, anything
matched by those parts of the pattern inside \(...\) delimiters). In this example, if the match
succeeds, the resulting fields are a decomposition that separates out the lvalue, operator, and
rvalue of any assignment line.

Specifically, a successful call to matchlist() will return a list with the following elements:

• The full line (because matchlist()always returns the entire match as its first element)
• Everything to the left of the assignment operator
• The assignment operator itself
• Everything to the right of the assignment operator

In that case, the call to add() adds a sublist of the final three fields to the lines list. If the match
failed (that is, the line didn’t contain an assignment), then matchlist() will return an empty list, so
the sublist that add() appends (fields[1:3] below) will also be empty. This will be used to indicate
a line of no further interest to the reformatter:

call add(lines, fields[1:3])

The fourth code block deploys the filter() and map() functions to analyze the structure of each
line containing an assignment. It first uses a filter() to winnow the list of lines, keeping only
those that were successfully decomposed into multiple components by the previous code block:

let op_lines = filter(copy(lines), '!empty(v:val)')

Next the function determines the length of each assignment’s lvalue, by mapping the strlen()
function over a copy of the filtered lines:

map(copy(op_lines), 'strlen(v:val[0])')

The resulting list of lvalue lengths is then passed to the built-in max() function to determine the
longest lvalue in any assignment. The maximal length determines the column at which all the
assignment operators will need to be aligned (that is, one column beyond the widest lvalue):

let max_lval = max(map(copy(op_lines),'strlen(v:val[0])')) + 1

In the same way, the final line of the fourth code block determines the maximal number of columns
required to accommodate the various assignment operators that were found, by mapping and then
maximizing their individual string lengths:

let max_op = max(map(copy(op_lines),'strlen(v:val[1])'))

The final code block then reformats the assignment lines, by iterating through the original buffer
line numbers (linenum) and through each line in the lines list, in parallel:

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 10 of 20

let linenum = firstline

for line in lines

Each iteration of the loop checks whether a particular line needs to be reformatted (that is, whether
it was decomposed successfully around an assignment operation). If so, the function creates a
new version of the line, using a printf() to reformat the line’s components:

if !empty(line)
 let newline = printf("%-*s%*s%s", max_lval, line[0], max_op, line[1], line[2])

That new line is then written back to the editor buffer by calling setline(), and the line tracking is
updated for the next iteration:

 call setline(linenum, newline)
endif
let linenum += 1

Once all the lines have been processed, the buffer will have been completely updated and all
the relevant assignment operators aligned to a suitable column. Because it can take advantage
of Vimscript's excellent support for lists and list operations, the code for this second version of
AlignAssignments() is about 15 percent shorter than that of the previous version. Far more
importantly, however, the function does only one-third as many buffer accesses, and the code is
much clearer and more maintainable.

Example 2: Enhancing Vim’s completion facilities

Vim has a sophisticated built-in text-completion mechanism, which you can learn about by typing
:help ins-completion in any Vim session.

One of the most commonly used completion modes is keyword completion. You can use it any
time you’re inserting text, by pressing CTRL-N. When you do, it searches various locations
(as specified by the "complete" option), looking for words that start with whatever sequence of
characters immediately precedes the cursor. By default, it looks in the current buffer you’re editing,
any other buffers you’ve edited in the same session, any tag files you’ve loaded, and any files that
are included from your text (via the include option).

For example, if you had the preceding two paragraphs in a buffer, and then—in insertion mode—
you typed:

My use of Vim is increasingly so<CTRL-N>

Vim would search the text and determine that the only word beginning with "so..." was
sophisticated, and would complete that word immediately:

My use of Vim is increasingly sophisticated_

On the other hand, if you typed:

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 11 of 20

My repertoire of editing skills is bu<CTRL-N>

Vim would detect three possible completions: built, buffer, and buffers. By default, it would show a
menu of alternatives:

Listing 21. Text completion with alternatives
My repertoire of editing skills is bu_
 built
 buffer
 buffers

and you could then use a sequence of CTRL-N and CTRL-P (or the up- and down-arrows) to step
through the menu and select the word you wanted.

To cancel a completion at any time, you can type CTRL-E; to accept and insert the currently
selected alternative, you can type CTRL-Y. Typing anything else (typically, a space or newline)
also accepts and inserts the currently selected word, as well as whatever extra character you
typed.

Designing smarter completions
There’s no doubt that Vim's built-in completion mechanism is extremely useful, but it’s not very
clever. By default, it matches only sequences of "keyword" characters (alphanumerics and
underscore), and it has no deep sense of context beyond matching what’s immediately to the left
of the cursor.

The completion mechanism is also not very ergonomic. CTRL-N isn’t the easiest sequence to
type, nor is it the one a programmer’s fingers are particularly used to typing. Most command-line
users are more accustomed to using TAB or ESC as their completion key.

Happily, with Vimscript, we can easily remedy those deficiencies. Let’s redefine the TAB key in
insertion mode so that it can be taught to recognize patterns in the text on either side of the cursor
and select an appropriate completion for that context. We’ll also arrange it so that, if the new
mechanism doesn’t recognize the current insertion context, it will fall back to Vim’s built-in CTRL-
N completion mechanism. Oh, and while we’re at it, we should probably make sure we can still use
the TAB key to type tab characters, where that’s appropriate.

Specifying smarter completions
To build this smarter completion mechanism, we’ll need to store a series of "contextual responses"
to a completion request. So we’ll need a list. Or rather, a list of lists, given each contextual
response will itself consist of four elements. Listing 22 shows how to set up that data structure.

Listing 22. Setting up a look-up table in Vimscript
" Table of completion specifications (a list of lists)...
let s:completions = []
" Function to add user-defined completions...
function! AddCompletion (left, right, completion, restore)
 call insert(s:completions, [a:left, a:right, a:completion, a:restore])
endfunction

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 12 of 20

let s:NONE = ""
" Table of completions...
" Left Right Complete with... Restore
" ===== ======= ==================== =======
call AddCompletion('{', s:NONE, "}", 1)
call AddCompletion('{', '}', "\<CR>\<C-D>\<ESC>O", 0)
call AddCompletion('\[', s:NONE, "]", 1)
call AddCompletion('\[', '\]', "\<CR>\<ESC>O\<TAB>", 0)
call AddCompletion('(', s:NONE, ")", 1)
call AddCompletion('(', ')', "\<CR>\<ESC>O\<TAB>", 0)
call AddCompletion('<', s:NONE, ">", 1)
call AddCompletion('<', '>', "\<CR>\<ESC>O\<TAB>", 0)
call AddCompletion('"', s:NONE, '"', 1)
call AddCompletion('"', '"', "\\n", 1)
call AddCompletion("'", s:NONE, "'", 1)
call AddCompletion("'", "'", s:NONE, 0)

The list-of-lists we create will act as a table of contextual response specifications, and will be
stored in the list variable s:completions. Each entry in the list will itself be a list, with four values:

• A string specifying a regular expression to match what’s to the left of the cursor
• A string specifying a regular expression to match what’s to the right of the cursor
• A string to be inserted when both contexts are detected
• A flag indicating whether to automatically restore the cursor to its pre-completion position,

after the completion text has been inserted

To populate the table, we create a small function: AddCompletion(). This function expects four
arguments: the left and right contexts, and the replacement text, and the "restore cursor" flag.
The series of arguments are simply collected into a single list:

[a:left, a:right, a:completion, a:restore]

and that list is then prepended as a single element at the start of the s:completions variable using
the built-in insert() function:

call insert(s:completions, [a:left, a:right, a:completion, a:restore])

Repeated calls to AddCompletion() therefore build up a list of lists, each of which specifies one
completion. The code in Listing 22 does the work.

The first call to AddCompletion():

" Left Right Complete with... Restore
" ===== ======= ==================== =======
call AddCompletion('{', s:NONE, '}', 1)

specifies that, when the new mechanism encounters a curly brace to the left of the cursor and
nothing to the right, it should insert a closing curly brace and then restore the cursor to its pre-
completion position. That is, when completing:

while (1) {_

(where the _ represents the cursor), the mechanism will now produce:

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 13 of 20

while (1) {_}

leaving the cursor conveniently in the middle of the newly closed block.

The second call to AddCompletion():

" Left Right Complete with... Restore
" ===== ======= ==================== =======
call AddCompletion('{', '}', "\<CR>\<C-D>\<ESC>O", 0)

then proceeds to make the completion mechanism smarter still. It specifies that, when the
mechanism encounters an opening curly brace to the left of the cursor and a closing brace to the
right of the cursor, it should insert a newline, outdent the closing curly (via a CTRL-D), then escape
from insertion mode (ESC) and open a new line above the closing curly (O).

Assuming the "smartindent" option is enabled, the net effect of the sequence is that, when you
press TAB in the following context

while (1) {_}

the mechanism will produce:

while (1) {
 _
}

In other words, because of the first two additions to the completion table, TAB-completion after an
opening brace closes it on the same line, and then immediately doing a second TAB-completion
"stretches" the block across several lines (with correct indenting).

The remaining calls to AddCompletion() replicate this arrangement for the three other kinds of
brackets (square, round, and angle) and also provide special completion semantics for single-
and double-quotes. Completing after a double-quote appends the matching double-quote, while
completing between two double quotes appends a \n (newline) metacharacter. Completing after
a single quote appends the matching single quote, and then a second completion attempt does
nothing.

Implementing smarter completions
Once the list of completion-specifications has been set up, all that remains is to implement a
function to select the appropriate completion from the table, and then bind that function to the TAB
key. Listing 23 shows that code.

Listing 23. A smarter completion function
" Implement smart completion magic...
function! SmartComplete ()
 " Remember where we parked...
 let cursorpos = getpos('.')
 let cursorcol = cursorpos[2]
 let curr_line = getline('.')

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 14 of 20

 " Special subpattern to match only at cursor position...
 let curr_pos_pat = '\%' . cursorcol . 'c'

 " Tab as usual at the left margin...
 if curr_line =~ '^\s*' . curr_pos_pat
 return "\<TAB>"
 endif

 " How to restore the cursor position...
 let cursor_back = "\<C-O>:call setpos('.'," . string(cursorpos) . ")\<CR>"

 " If a matching smart completion has been specified, use that...
 for [left, right, completion, restore] in s:completions
 let pattern = left . curr_pos_pat . right
 if curr_line =~ pattern
 " Code around bug in setpos() when used at EOL...
 if cursorcol == strlen(curr_line)+1 && strlen(completion)==1
 let cursor_back = "\<LEFT>"
 endif

 " Return the completion...
 return completion . (restore ? cursor_back : "")
 endif
 endfor

 " If no contextual match and after an identifier, do keyword completion...
 if curr_line =~ '\k' . curr_pos_pat
 return "\<C-N>"

 " Otherwise, just be a <TAB>...
 else
 return "\<TAB>"
 endif
endfunction

" Remap <TAB> for smart completion on various characters...
inoremap <silent> <TAB> <C-R>=SmartComplete()<CR>

The SmartComplete() function first locates the cursor, using the built-in getpos() function with a
'.' argument (that is, "get position of cursor"). That call returns a list of four elements: the buffer
number (usually zero), the row and column numbers (both indexed from 1), and a special "virtual
offset" (which is also usually zero, and not relevant here). We’re primarily interested in the middle
two values, as they indicate the location of the cursor. In particular, SmartComplete() needs the
column number, which is extracted by indexing into the list that getpos() returned, like so:

let cursorcol = cursorpos[2]

The function also needs to know the text on the current line, which can be retrieved using
getline(), and is stored in curr_line.

SmartComplete() is going to convert each entry in the s:completions table into a pattern to be
matched against the current line. In order to correctly match left and right contexts around the
cursor, it needs to ensure the pattern matches only at the cursor’s column. Vim has a special
subpattern for that: \%Nc (where N is the column number required). So, the function creates that
subpattern by interpolating the cursor’s column position found earlier:

let curr_pos_pat = '\%' . cursorcol . 'c'

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 15 of 20

Because we’re eventually going to bind this function to the TAB key, we’d like the function to still
insert a TAB whenever possible, and especially at the start of a line. So SmartComplete() first
checks if there is only whitespace to the left of the cursor position, in which case it returns a simple
tabspace:

if curr_line =~ '^\s*' . curr_pos_pat
 return "\<TAB>"
endif

If the cursor isn’t at the start of a line, then SmartComplete() needs to check all the entries in the
completion table and determine which, if any, apply. Some of those entries will specify that the
cursor should be returned to its previous position after completion, which will require executing
a custom command from within insertion mode. That command is simply a call to the built-in
setpos() function, passing the value the original information from the earlier call to getpos().
To execute that function call from within insertion mode requires a CTRL-O escape (see :help
i_CTRL-O in any Vim session). So SmartComplete() prebuilds the necessary CTRL-O command as
a string and stores in cursor_back:

let cursor_back = "\<C-O>:call setpos('.'," . string(cursorpos) . ")\<CR>"

A more-sophisticated for loop

To walk through the completions table, the function uses a special version of the for statement.
The standard for loop in Vimscript walks through a one-dimensional list, one element at a time:

Listing 24. A standard for loop
for name in list
 echo name
endfor

However, if the list is two-dimensional (that is, each element is itself a list), then you often want to
"unpack" the contents of each nested list as it is iterated. You could do that like so:

Listing 25. Iterating over nested lists
for nested_list in list_of_lists
 let name = nested_list[0]
 let rank = nested_list[1]
 let serial = nested_list[2]

 echo rank . ' ' . name . '(' . serial . ')'
endfor

but Vimscript has a much cleaner shorthand for it:

Listing 26. A cleaner shorthand for iterating over nested lists
for [name, rank, serial] in list_of_lists
 echo rank . ' ' . name . '(' . serial . ')'
endfor

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 16 of 20

On each iteration, the loop takes the next nested list from list_of_lists and assigns the first
element of that nested list to name, the second nested element to rank, and the third to serial.

Using this special form of for loop makes it easy for SmartComplete() to walk through the table of
completions and give a logical name to each component of each completion:

for [left, right, completion, restore] in s:completions

Recognizing a completion context

Within the loop, SmartComplete() constructs a regular expression by placing the left and right
context patterns around the special subpattern that matches the cursor position:

let pattern = left . curr_pos_pat . right

If the current line matches the resulting regex, then the function has found the correct completion
(the text of which is already in completion) and can return it immediately. Of course, it also needs
to append the cursor restoration command it built earlier, if the selected completion has requested
it (that is, if restore is true).

Unfortunately, that setpos()-based cursor restoration command has a problem. In Vim versions
7.2 or earlier, there’s an obscure idiosyncrasy in setpos(): it doesn’t correctly reposition the
cursor in insertion mode if the cursor was previously at the end of a line and the completion text
to be inserted is only one character long. In that special case, the restoration command has to be
changed to a single left-arrow, which moves the cursor back over the one newly inserted character.

So, before the selected completion is returned, the following code makes that change:

Listing 27. Restoring the cursor after a one-character insertion at end-of-line
if cursorcol == strlen(curr_line)+1 && strlen(completion)==1
 let cursor_back = "\<LEFT>"
endif

All that remains is to return the selected completion, appending the cursor_back command if
cursor restoration was requested:

return completion . (restore ? cursor_back : "")

If none of the entries from the completion table match the current context, SmartComplete()
will eventually fall out of the for loop and will then try two final alternatives. If the character
immediately before the cursor was a "keyword" character, it invokes a normal keyword-completion
by returning a CTRL-N:

Listing 28. Falling back to CTRL-N behavior
" If no contextual match and after an identifier, do keyword completion...
if curr_line =~ '\k' . curr_pos_pat
 return "\<C-N>"

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 17 of 20

Otherwise, no completion was possible, so it falls back to acting like a normal TAB key, by
returning a literal tab character:

Listing 29. Falling back to normal TAB key behavior
" Otherwise, just be a <TAB>...
else
 return "\<TAB>"
endif

Deploying the new mechanism

Now we just have to make the TAB key call SmartComplete() in order to work out what it should
insert. That’s done with an inoremap, like so:

inoremap <silent> <TAB> <C-R>=SmartComplete()<CR>

The key-mapping converts any insert-mode TAB to a CTRL-R=, calling SmartComplete() and
inserting the completion string it returns (see :help i_CTRL-R or the first article in this series for
details of this mechanism).

The inoremap form of imap is used here because some of the completion strings that
SmartComplete() returns also contain a TAB character. If a regular imap were used, inserting
that returned TAB would immediately cause this same key-mapping to be re-invoked, calling
SmartComplete() again, which might return another TAB, and so on.

With the inoremap in place, we now have a TAB key that can:

• Recognize special user-defined insertion contexts and complete them appropriately
• Fall back to regular CTRL-N completion after an identifier
• Still act like a TAB everywhere else

In addition, with the code from Listings 22 and 23 placed in your .vimrc file, you will be able to
add new contextual completions simply by extending the completion table with extra calls to
AddCompletion(). For example, you could make it easier to start new Vimscript functions with:

call AddCompletion('function!\?', "", "\<CR>endfunction", 1)

so that tabbing immediately after a function keyword appends the corresponding endfunction
keyword on the next line.

Or, you could autocomplete C/C++ comments intelligently (assuming the cindent option is also
set) with:

call AddCompletion('/*', "", '*/', 1)
call AddCompletion('/*', '*/', "\<CR>* \<CR>\<ESC>\<UP>A", 0)

So that:

http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 18 of 20

/*_<TAB>

appends a closing comment delimiter after the cursor:

/*_*/

and a second TAB at that point inserts an elegant multiline comment and positions the cursor in
the middle of it:

/*
 * _
 */

Looking ahead

The ability to store and manipulate lists of data greatly increases the range of tasks that Vimscript
can easily accomplish, but lists are not always the ideal solution for aggregating and storing
collections of information. For example, the re-implemented version of AlignAssignments() shown
in Listing 20 contains a printf() call that looks like this:

printf("%-*s%*s%s", max_lval, line[0], max_op, line[1], line[2])

Using line[0], line[1], and line[2] for the various components of a code line is certainly not
very readable, and hence both error-prone during initial implementation, and unnecessarily hard to
maintain thereafter.

This is a common situation: related data needs to be collected together, but has no inherent or
meaningful order. In such cases, each datum is often better identified by some logical name,
rather than by a numeric index. Of course, we could always create a set of variables to "name" the
respective numeric constants:

let LVAL = 0
let OP = 1
let RVAL = 2

" and later...

printf("%-*s%*s%s", max_lval, line[LVAL], max_op, line[OP], line[RVAL])

But that’s a clunky and brittle solution, prone to hard-to-find errors if the order of components were
to change within the line list, but the variables weren’t updated appropriately.

Because collections of named data are such a common requirement in programming, in most
dynamic languages there’s a common construct that provides them: the associative array, or hash
table, or dictionary. As it turns out, Vim has dictionaries too. In the next article in this series, we’ll
look at Vimscript’s implementation of that very useful data structure.

ibm.com/developerWorks/ developerWorks®

Scripting the Vim editor, Part 3: Built-in lists Page 19 of 20

Resources

Learn

• Start learning about Vimscript, the embedded language for extending the Vim editor,
with the first article in this series: "Scripting the Vim editor, Part 1: Variables, values, and
expressions" (developerWorks, May 2009).

• "Scripting the Vim editor, Part 2: User-defined functions" (developerWorks, July 2009) tours
Vimscript’s scalar data types: strings, numbers, and booleans.

• See the following resources to continue learning about the Vim editor and its many
commands:

• The Vim homepage
• The online book A Byte of Vim
• Various hardcopy books on Vim
• Vim's own manual
• Steve Oualline's Vim Cookbook

• For more extensive examples of Vim scripting, see:
• The Vim Tips wiki
• The Vimscript archive

• In the developerWorks Linux zone, find more resources for Linux developers, and scan our
most popular articles and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.
• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Start at the Vim distributions downloads page to upgrade to the latest version of Vim for your
platform.

• With IBM trial software, available for download directly from developerWorks, build your next
development project on Linux.

Discuss

• Get involved in the My developerWorks community. Connect with other developerWorks
users while exploring the developer-driven blogs, forums, groups, and wikis.

http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.ibm.com/developerworks/linux/library/l-vim-script-2/index.html
http://www.vim.org/
http://www.swaroopch.com/notes/Vim
http://iccf-holland.org/click5.html
http://vimdoc.sourceforge.net/
http://www.oualline.com/vim-cook.html
http://vim.wikia.com/
http://vim.sourceforge.net/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.vim.org/download.php
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community

developerWorks® ibm.com/developerWorks/

Scripting the Vim editor, Part 3: Built-in lists Page 20 of 20

About the author

Damian Conway, Dr.

Damian Conway is an Adjunct Associate Professor of Computer Science at Monash
University, Australia, and CEO of Thoughtstream, an international IT training
company. He has been a daily vi user for well over a quarter of a century, and there
now seems very little hope he will ever conquer the addiction.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://damian.conway.org/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Lists in Vimscript
	Nested lists
	List assignments and aliasing

	Basic list operations
	Other list-related procedures
	A common mistake with list procedures
	Filtering and transforming lists
	The map() function
	List concatenation

	Sublists
	Example 1: Revisiting autoalignments
	Example 2: Enhancing Vim’s completion facilities
	Designing smarter completions
	Specifying smarter completions
	Implementing smarter completions
	A more-sophisticated for loop
	Recognizing a completion context
	Deploying the new mechanism

	Looking ahead
	Resources
	About the author
	Trademarks

