developerWorks.

Scripting the Vim editor, Part 5: Event-driven scripting
and automation

Automate your workflow with Vim’s autocommands

Damian Conway, Dr. 03 March 2010
CEO and Chief Trainer
Thoughtstream

Why repeat yourself? You can configure Vim’s comprehensive event model to execute time-
saving scripts whenever particular editing events—such as loading a file or switching between
editor modes—occur. This article, the fifth in a series, describes how events work in Vim,
explores a selection of useful event types, and then gets you started with attaching specific
scripts to particular events. The end result is a more automated workflow configured precisely
to your needs.

View more content in this series

Vim’s event model

Vim’s editing functions behave as if they are event-driven. For performance reasons, the actual
implementation is more complex than that, with much of the event handling optimized away or
handled several layers below the event loop itself, but you can still think of the editor as a simple
while loop responding to a series of editing events.

Whenever you start a Vim session, open a file, edit a buffer, change your editing mode, switch
windows, or interact with the surrounding filesystem, you are effectively queuing an event that Vim
immediately receives and handles.

For example, if you start Vim, edit a file named demo.txt, swap into Insert mode, type in some text,
save the file, and then exit, your Vim session receives a series of events like what is shown in
Listing 1.

Listing 1. Event sequence in a simple Vim editing session

> vim

BufWinEnter (create a default window)
© Copyright IBM Corporation 2010 Trademarks
Scripting the Vim editor, Part 5: Event-driven scripting and Page 1 of 18

automation

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=Articles&sort_order=desc&show_all=false&start_no=1&sort_by=Title&search_by=scripting+the+vim+editor&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?site_id=1&contentarea_by=Linux&sort_by=Date&sort_order=1&start=1&end=4&topic_by=All%20topics%20and%20related%20products&product_by=&type_by=Articles&show_abstract=true&search_by=scripting%20the%20vim%20editor

developerWorks® ibm.com/developerWorks/

BufEnter (create a default buffer)
VimEnter (start the Vim session):edit example.txt
BufNew (create a new buffer to contain demo.txt)
BufAdd (add that new buffer to the session’s buffer 1list)
BufLeave (exit the default buffer)
BufWinLeave (exit the default window)
BufUnload (remove the default buffer from the buffer 1list)
BufDelete (deallocate the default buffer)
BufReadCmd (read the contexts of demo.txt into the new buffer)
BufEnter (activate the new buffer)
BufWinEnter (activate the new buffer's window)i
InsertEnter (swap into Insert mode)
Hello
CursorMovedI (insert a character)
CursorMovedI (insert a character)
CursorMovedI (insert a character)
CursorMovedI (insert a character)
CursorMovedI (insert a character)<ESC>
InsertlLeave (swap back to Normal mode) :wq
BufWriteCmd (save the buffer contents back to disk)
BufWinLeave (exit the buffer's window)
BufUnload (remove the buffer from the buffer 1list)
VimLeavePre (get ready to quit Vim)
VimLeave (quit Vim)

More interestingly, Vim provides "hooks" that allow you to intercept any of these editing events.
So you can cause a particular Vimscript command or function to be executed every time a specific
event occurs: every time Vim starts, every time a file is loaded, every time you leave Insert mode
... Or even every time you move the cursor. This makes it possible to add automatic behaviors
almost anywhere throughout the editor.

Vim provides notifications for 78 distinct editing events, which fall into eight broad categories:
session start-up and clean-up events, file-reading events, file-writing events, buffer-change
events, option-setting events, window-related events, user-interaction events, and asynchronous
notifications.

To see the complete list of these events, type :help autocmd-events on the Vim command line.
For detailed descriptions of each event, see :help autocmd-events-abc.

This article explains how events work in Vim and then introduces a series of scripts for automating
editing events and behaviours.

Event handling with autocommands

The mechanism Vim provides for intercepting events is known as the autocommand. Each
autocommand specifies the type of event to be intercepted, the name of the edited file in which
such events are to be intercepted, and the command-line mode action to be taken when the event
is detected. The keyword for all this is autocmd (which is often abbreviated to just au). The usual
syntax is:

autocmd EventName filename_pattern :command

The event name is one of the 78 valid Vim event names (as listed under :help autocmd-events).
The filename pattern syntax is similar -- but not identical -- to a normal shell pattern (see :help

Scripting the Vim editor, Part 5: Event-driven scripting and Page 2 of 18
automation

ibm.com/developerWorks/ developerWorks®

autocmd-patterns for details). The command is any valid Vim command, including calls to
Vimscript functions. The colon at the start of the command is optional, but it's a good idea to
include it; doing so makes the command easier to locate in the (usually complex) argument list of
an autocmd.

For example, you could surrender all remaining dignity and specify an event handler for the
FocusGained event by adding the following to your .vimrc file:

autocmd FocusGained *.txt :echo 'Welcome back, ' . $USER . '! You look great!'

FocusGained events are queued whenever a Vim window becomes the window system'’s input
focus, so now whenever you swap back to your Vim session, if you're editing any file whose
name matches the filename pattern *. txt, then Vim will automatically execute the specified echo
command.

You can set up as many handlers for the same event as you wish, and all of them will be executed
in the sequence in which they were originally specified. For example, a far more useful automation
for FocusGained events might be to have Vim briefly emphasize the cursor line whenever you swap
back to your editing session, as shown in Listing 2.

Listing 2. A useful automation for FocusGained events

autocmd FocusGained *.txt :set cursorline
autocmd FocusGained *.txt :redraw

autocmd FocusGained *.txt :sleep 1

autocmd FocusGained *.txt :set nocursorline

These four autocommands cause Vim to automatically highlight the line containing the cursor (set
cursorline), reveal that highlighting (redraw), wait one second (sleep 1), and then switch the
highlighting back off (set nocursorline).

You can use any series of commands in this way; you can even break up a single control
structure across multiple autocommands. For example, you could set up a global variable
(9:autosave_on_focus_change) to control an "autosave"mechanism that automatically writes any
modified . txt file whenever the user swaps away from Vim to some other window (causing a
FocusLost event to be queued):

Listing 3. Autocommand to autosave when leaving an editor window

autocmd FocusLost *.txt : if &modified && g:autosave_on_focus_change
autocmd FocusLost *.txt : write
autocmd FocusLost *.txt : echo "Autosaved file while you were absent"
autocmd FocusLost *.txt : endif

Multi-line autocommands like this require that you repeat the essential event-selector specification
(i.e., FocusLost *.txt) multiple times. Hence they are generally unpleasant to maintain, and more
error-prone. It's much cleaner and safer to factor out any control structure, or other command
sequences, into a separate function and then have a single autocommand call that function. For
example:

Scripting the Vim editor, Part 5: Event-driven scripting and Page 3 of 18
automation

developerWorks® ibm.com/developerWorks/

Listing 4. A cleaner way to handle multi-line autocommands

function! Highlight_cursor ()
set cursorline
redraw
sleep 1
set nocursorline
endfunction
function! Autosave ()
if &modified && g:autosave_on_focus_change

write
echo "Autosaved file while you were absent"
endif
endfunction
autocmd FocusGained *.txt :call Highlight_cursor()
autocmd FocusLost * . txt :call Autosave()

Universal and single-file autocommands

So far, all the examples shown have restricted event handling to files that matched the pattern

* . txt. Obviously, that implies that you can use any file-globbing pattern to specify the files to which
a particular autocommand applies. For example, you could make the previous cursor-highlighting
FocusGained autocommand apply to any file simply by using the universal file-matching pattern *
as the filename filter:

" Cursor-highlight any file when context-switching ...
autocmd FocusGained * :call Highlight_cursor()

Alternatively, you can restrict commands to a single file:

" Only cursor-highlight for my .vimrc ...
autocmd FocusGained ~/.vimrc :call Highlight_cursor()

Note that this also implies that you can specify different behaviors for the same event, depending
on which file is being edited. For example, when the user turns their attention elsewhere, you
might choose to have text files autosaved, or have Perl or Python scripts check-pointed, while a
documentation file might be instructed to reformat the current paragraph, as shown in Listing 5.

Listing 5. What to do when the user’s attention is elsewhere

autocmd FocusLost *.txt :call Autosave()
autocmd FocusLost *.p[ly] :call Checkpoint_sourcecode()
autocmd FocusLost *.doc :call Reformat_current_para()

Autocommand groups

Autocommands have an associated namespace mechanism that allows them to be gathered into
autocommand groups, whence they can be manipulated collectively.

To specify an autocommand group, you can use the augroup command. The general syntax for the
command is:

Scripting the Vim editor, Part 5: Event-driven scripting and Page 4 of 18
automation

ibm.com/developerWorks/ developerWorks®

augroup GROUPNAME
" autocommand specifications here ...
augroup END

The group’s name can be any series of non-whitespace characters, except "end"or "END”, which are
reserved for specifying the end of a group.

Within an autocommand group, you can place any number of autocommands. Typically, you would
group commands by the event they all respond to, as shown in Listing 6.

Listing 6. Defining a group for autocommands responding to FocusLost
events

augroup Defocus

autocmd FocusLost *.txt :call Autosave()
autocmd FocusLost *.p[ly] :call Checkpoint_sourcecode()
autocmd FocusLost *.doc :call Reformat_current_para()

augroup END

Or you might group a series of autocommands relating to a single filetype, such as:

Listing 7. Defining a group of autocommands for handling text files

augroup TextEvents
autocmd FocusGained *.txt :call Highlight_cursor()
autocmd FocusLost * L txt :call Autosave()

augroup END

Deactivating autocommands

You can remove specific event handlers using the autocmd! command (that is, with an exclamation
mark). The general syntax for this command is:

autocmd! [group] [EventName [filename_pattern]]

To remove a single event handler, specify all three arguments. For example, to remove the handler
for FocusLost events on . txt files from the unfocussed group, use:

autocmd! Unfocussed FocusLost *.txt

Instead of a specific event name, you can use an asterisk to indicate that every kind of event
should be removed for the particular group and filename pattern. If you wanted to remove all
events for . txt files within the unfocussed group, you would use:

autocmd! Unfocussed * * L txt

If you leave off the filename pattern, then every handler for the specified event type is removed.
You could remove all the FocusLost handlers in the unfocussed group like so:

autocmd! Unfocussed FocusLost

Scripting the Vim editor, Part 5: Event-driven scripting and Page 5 of 18
automation

developerWorks® ibm.com/developerWorks/

If you also leave out the event name, then every event handler in the specified group is removed.
So, to turn off all event handling specified in the unfocussed group:

autocmd! Unfocussed

Finally, if you omit the group name, the autocommand removal applies to the currently active
group. The typical use of this option is to "clear the decks" within a group before setting up a series
of autocommands. For example, the unfocussed group is better specified like so:

Listing 8. Making sure a group is empty before adding new autocommands

augroup Unfocussed

autocmd!

autocmd FocusLost *.txt :call Autosave()

autocmd FocusLost *.p[ly] :call Checkpoint_sourcecode()
autocmd FocusLost *.doc :call Reformat_current_para()

augroup END

Adding an autocmd! to the start of every group is important because autocommands do not
statically declare event handlers; they dynamically create them. If you execute the same

autocmd twice, you get two event handlers, both of which will be separately invoked by the same
combination of event and filename from that point onward. By starting each autocommand group
with an autocmd!, you wipe out any existing handlers within the group so that subsequent autocmd
statements replace any existing handlers, rather than augmenting them. This, in turn, means

that your script can be executed as many times as necessary (or your .vimrc can be source’d
repeatedly) without multiplying event-handling entities unnecessarily.

Some practical examples

The appropriate use of autocommands can make your editing life vastly easier. Let’s look at a
few ways you can use autocommands to streamline your editing process and remove existing
frustrations.

Managing simultaneous edits

One of the most useful features of Vim is that it automatically detects when you attempt to edit
a file that is currently being edited by some other instance of Vim. That often happens in multi-
window environments, where you're already editing a file in another terminal; or in multi-user
setups, where someone else is already working on a shared file. When Vim detects a second
attempt to edit a particular file, you get the following request:

Swap file ".filename.swp" already exists!
[0]pen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort: _

Depending on the environment in which you’re working, your fingers probably automatically hit
one of those options every time, without much conscious thought on your part. For example, if you
rarely work on shared files, you probably just hit g to terminate the session, and then go hunting

Scripting the Vim editor, Part 5: Event-driven scripting and Page 6 of 18
automation

ibm.com/developerWorks/ developerWorks®

for the terminal window where you're already editing the file. On the other hand, if you typically edit
shared resources, perhaps your fingers are trained to immediately hit <ENTER>, in order to select
the default option and open the file read-only.

With autocommands, however, you can completely eliminate the need to see, recognize, and
respond to that message, simply by automating the response to the swapExists event that triggers
it. For example, if you never want to edit files that are already being edited elsewhere, you could
add the following to your .vimrc:

Listing 9. Automatically quitting on simultaneous edits

augroup NoSimultaneousEdits

autocmd!

autocmd SwapExists * :let v:swapchoice = 'q'
augroup END

This sets up an autocommand group, and removes any previous handlers (via the autocmd!
command). It then installs a handler for the swapExists event on any file (using the universal file
pattern: *). That handler simply assigns the response 'q' to the special v:swapchoice variable.
Vim consults this variable prior to displaying the "swapfile exists"message. If the variable has
been set, it uses the value as the automatic response and doesn’t bother showing the message.
So now you’ll never see the swapfile message; your Vim session will just automatically quit if you
try to edit a file that’s being edited elsewhere.

Alternately, if you'd prefer always to open already edited files in read-only mode, you can simply
change the NoSimultaneousEdits group to:

Listing 10. Automating read-only access to existing files

augroup NoSimultaneousEdits

autocmd!

autocmd SwapExists * :let v:swapchoice = 'o'
augroup END

More interestingly, you could arrange to select between these two (or any other) alternatives,
based on the location of the file being considered. For example, you might prefer to auto-quit files
in your own subdirectories, but open shared files under /dev/shared/ as read-only. You could do
that with the following:

Listing 11. Automating a context-sensitive response

augroup NoSimultaneousEdits
autocmd!
autocmd SwapExists ~/* :let v:swapchoice
autocmd SwapExists /dev/shared/* :let v:swapchoice
augroup END

That is: if the full filename begins with the home directory, followed by anything at all (~/*), then
preselect the "quit" behaviour; but if the full filename starts with the shared directory (/dev/shared/
*), then preselect the "read-only" behaviour instead.

Scripting the Vim editor, Part 5: Event-driven scripting and Page 7 of 18
automation

developerWorks® ibm.com/developerWorks/

Autoformatting code consistently

Vim has good support for automatic edit-time code layout (see :help indent.txt and :help
filter). For example, you can turn on the 'autoindent' and 'smartindent' options and have Vim
re-indent your code blocks automatically as you type. Or you can hook your own language-specific
code reformatter to the standard = command by setting the 'equalprg' option.

Unfortunately, Vim doesn’t have an option or a command to deal with one of the commonest
code-formatting situations: being forced to read someone else’s abysmally malformatted code.
Specifically, there’s no built-in option to tell Vim to automatically sanitize the formatting of any code
file you open.

That's okay because it’s trivially easy to set up an autocommand to do that instead.

For example, you could add the following autocommand group to your .vimrc, so that C, Python,
Perl, and XML files are automatically run through the appropriate code formatter whenever you
open a file of the corresponding type, as shown in Listing 12.

Listing 12. Beautiful code, on autocommand

augroup CodeFormatters

autocmd!

autocmd BufReadPost,FileReadPost * . py :silent %!PythonTidy.py

autocmd BufReadPost,FileReadPost *.p[1m] :silent %!perltidy -q

autocmd BufReadPost,FileReadPost * . xml :silent %!xmlpp -t -c -n
*

autocmd BufReadPost,FileReadPost
augroup END

.[ch] :silent %!indent

All of the autocommands in the group are identical in structure, differing only in the filename
extensions to which they apply and the corresponding pretty-printer they invoke.

Note that the autocommands do not name a single event to be handled. Instead, each one
specifies a list of events. Any autocmd can be specified with a comma-separated list of event types,
in which case the handler will be invoked for any of the events listed.

In this case, the events listed for each handler are BufrReadPost (which is queued whenever an
existing file is loaded into a new buffer) and FileReadPost (which is queued immediately after any
:read command is executed). These two events are often specified together because between
them they cover the most common ways of loading the contents of an existing file into a buffer.

After the event list, each autocommand specifies the file suffix(es) to which it applies: Python’s
.py, Perl’s .pl and .pm, XML's .xml, or the .c and .h files of C. Note that, as with events, these
filename patterns could also have been specified as a comma-separated list, rather than a single
pattern. For example, the Perl handler could have been written:

autocmd BufReadPost,FileReadPost *.pl,*.pm :silent %!perltidy -q

or the C handler could be extended to handle common C++ variants (.c, .cc, .cxx, etc.) as well,
like so:

Scripting the Vim editor, Part 5: Event-driven scripting and Page 8 of 18
automation

ibm.com/developerWorks/ developerWorks®

autocmd BufReadPost,FileReadPost *.[chCH], *.cc, *.hh, *.[ch]xx :silent %!indent

As usual, the final component of each autocommand is the command to be executed. In each
case, it is a global filter command (%! filter_program), which takes the entire contents of the file
(%) and pipes it out (1) to the specified external program (one of: PythonTidy.py, perltidy, xmlpp,
or indent). The output of each program is then pasted back into the buffer, replacing the original
contents.

Normally, when filter commands like these are used, Vim automatically displays a notification after
the command completes, like so:

42 lines filtered
Press ENTER or type command to continue_

To prevent this annoyance, each of the autocommands prefixes its action with a :silent, which
neutralizes any ordinary information messages, but still allows error messages to be displayed.

Opportunistic code autoformatting

Vim has excellent support for automatically formatting C code as you type it, but it offers less
support for other languages. That's not entirely Vim’s fault; some languages -- yes, Perl, I'm
looking at you -- can be extremely hard to format correctly on the fly.

If Vim doesn't give you adequate support for autoformatting source code in your preferred
language, you can easily have your editor invoke an external utility to do that for you.

The simplest approach is to make use of the InsertLeave event. This event is queued whenever
you exit from Insert mode (most commonly, immediately after you hit <esc>). You can easily set
up a handler that reformats your code every time you finish adding to it, like so:

Listing 13. Invoking PerITidy after every edit

function! TidyAndResetCursor ()
let cursor_pos = getpos('.")
%!perltidy -q
call setpos('.', cursor_pos)
endfunction

augroup PerlTidy

autocmd!

autocmd InsertLeave *.p[lm] :call TidyAndResetCursor ()
augroup END

The TidyAndResetCursor () function first makes a record of the current cursor position, by storing
the cursor information returned by the built-in getpos() in the variable cursor_pos. It then runs the
external perltidy utility over the entire file (%!perltidy -q), and finally restores the cursor to its
original position, by passing the saved cursor information to the built-in setpos() function.

Inside the Per1Tidy group, you then just set up a single autocommand that calls
TidyAndResetCursor () every time the user leaves Insert mode within any Perl file.

Scripting the Vim editor, Part 5: Event-driven scripting and Page 9 of 18
automation

developerWorks® ibm.com/developerWorks/

This same code pattern could be adapted to perform any appropriate action each time you insert
text. For example, if you were working on a very unreliable system and wished to maximize your
ability to recover files (see :help usr_11.txt) if something went wrong, you could arrange for Vim
to update its swap-file every time you left Insert mode, like so:

augroup UpdateSwap

autocmd!

autocmd InsertLeave * :preserve
augroup END

Timestamping files

Another useful set of events are BufwritePre, FilewWritePre, and FileAppendPre. These "Pre"
events are queued just before your Vim session writes a buffer back to disk (as a result of a
command such as :write, :update, Or :saveas). A BufWritePre event occurs just before the entire
buffer is written, a FilewritePre occurs just before part of a buffer is written (that is, when you
specify a range of lines to be written: :1, 10write). A FileAppendPre Occurs just before a :write
command is used to append rather than replace; for example:

:write >> logfile.log).

For all three types of events, Vim sets the special line-number aliases '[and '] to the range
of lines being written. These aliases can then be used in the range specifier of any subsequent
command, to ensure that autocommand actions are applied only to the relevant lines.

Typically, you would set up a single handler that covered all three types of pre-writing event. For
example, you could have Vim automatically update an internal timestamp whenever a file was
written (or appended) to disk, as shown in Listing 14.

Listing 14. Automatically updating an internal timestamp whenever a file is
saved

function! UpdateTimestamp ()
'"[,']s/AThis file last updated: \zs.*/\= strftime("%c") /
endfunction

augroup TimeStamping
autocmd!

autocmd BufWritePre,FileWritePre, FileAppendPre * :call UpdateTimestamp()
augroup END

The updateTimestamp() function performs a substitution (s/.../.../) on every line being written,
by specifically limiting the range of the substitution to between '[and '] like so: '[, '1s/.../.../.
The substitution looks for lines starting with "This file last updated:”, followed by anything
(.*). The \zs before the .* causes the substitution to pretend that the match only started after the
colon, so only the actual timestamp is replaced.

To update the timestamp, the substitution uses the special \= escape sequence in the replacement
text. This escape sequence tells Vim to treat the replacement text as a Vimscript expression,
evaluating it to get the actual replacement string. In this case, that expression is a call to the

Scripting the Vim editor, Part 5: Event-driven scripting and Page 10 of 18
automation

ibm.com/developerWorks/ developerWorks®

built-in strftime() function, which returns a standard timestamp string of the form: "Fri oct
23 14:51:01 2009". This string is then written back into the timestamp line by the substitution
command.

All that remains is to set up an event handler (autocmd) for all three event types
(BufwritePre,FilewritePre,FileAppendPre) in any file (*) and have it invoke the appropriate
timestamping function (:call uUpdateTimestamp()). Now, any time a file is written, any timestamp
in the lines being saved will be updated to the current time.

Note that Vim provides two other sets of events that you can use to modify the behavior of write
operations. To automate some action that should happen after a write, you can use BufWritePost,
FilewritePost, and FileAppendPost. To completely replace the standard write behavior with your
own script, you can use BufwriteCmd, FileWriteCmd, and FileAppendCmd (but consult :help Cmd-
event first for some important caveats).

Table-driven timestamps

Of course, you could also create much more elaborate mechanisms to handle files with different
timestamping conventions. For example, you might prefer to specify the various timestamp
signatures and their replacements in a Vim dictionary (see the previous article in this series) and
then loop through each pair to determine how the timestamp should be updated. This approach is
shown in Listing 15.

Listing 15. Table-driven automatic timestamps

let s:timestamps = {

\ 'This file last updated: \zs.*' : 'strftime("%c")',

\ 'Last modification: \zs.*' : 'strftime("%Y%m%d . %H%M%S") ",
\ 'Copyright (c) .\{-}, \d\d\d\d-\zs\d\d\d\d' : ‘'strftime("%Y")',

\}

function! UpdateTimestamp ()
for [signature, replacement] in items(s:timestamps)
silent! execute "'[,']s/" . signature . '/\= ' . replacement . '/'
endfor
endfunction

Here, the for loop iterates through each timestamp’s signature/replacement pair in the
s:timestamps dictionary, like so:

for [signature, replacement] in items(s:timestamps)

It then generates a string containing the corresponding substitution command. The following
substitution command is identical in structure to the one in the previous example, but is here
constructed by interpolating the signature/replacement pair into a string:

"'[,"']s/" . signature . '/\= ' . replacement . '/'
Finally, it executes the generated command silently:
silent! execute "'[,']s/" . signature . '/\= ' . replacement . '/'

Scripting the Vim editor, Part 5: Event-driven scripting and Page 11 of 18
automation

developerWorks® ibm.com/developerWorks/

The use of silent! is important because it ensures that any substitutions that don’t match will not
result in the annoying Pattern not found error message.

Note that the last entry in s: timestamps is a particularly useful example: it automatically updates
the year-range of any embedded copyright notices, whenever a file containing them is written.

Filename-driven timestamps

Instead of listing all possible timestamp formats in a single table, you might prefer to parameterize
the updateTimestamp()function and then create a series of distinct autocmds for different filetypes,
as shown in Listing 16.

Listing 16. Context-sensitive timestaming for different filetypes

function! UpdateTimestamp (signature, replacement)silent! execute "'[,']s/" . a:signature . '/\='
a:replacement . '/'
endfunction

augroup Timestamping
autocmd!

" C header files use one timestamp format ... autocmd BufWritePre,FileWritePre,FileAppendPre *.h
\ :call UpdateTimestamp('This file last updated: \zs.*',6 'strftime("%c")')" C code files use
another ...autocmd BufWritePre,FileWritePre, FileAppendPre *.c
\ :call UpdateTimestamp('Last update: \zs.*',6 'strftime("%Y%M%d.%H%M%S")"')
augroup END

In this version, the signature and replacement components are passed explicitly to
UpdateTimestamp (), which then generates a string containing the single corresponding
substitution command and executes it. Within the Timestamping group, you then set up individual
autocommands for each required file type, passing the appropriate timestamp signature and
replacement text for each.

Conjuring directories

Autocommands can be useful even before you begin editing. For example, when you start editing
a new file, you will occasionally see a message like this one:

"dir/subdir/filename" [New DIRECTORY]

This means that the file you specified (in this case filename) does not exist and that the directory
it's supposed to be in (in this case dir/subdir) doesn’t exist either.

Vim will happily allow you to ignore this warning (many users don’t even recognize thatitis a
warning) and continue to edit the file. But when you try to save it you'll be confronted with the
following unhelpful error message:

"dir/subdir/filename" E212: Can't open file for writing.

Now, in order to save your work, you have to explicitly create the missing directory before writing
the file into it. You can do that from within Vim like so:

Scripting the Vim editor, Part 5: Event-driven scripting and Page 12 of 18
automation

ibm.com/developerWorks/ developerWorks®

iwrite

"dir/subdir/filename" E212: Can't open file for writing.
:call mkdir(expand("%:h"),"p")

‘write

Here, the call to the built-in expand() function is applied to "%:h", where the % means the current
filepath (in this case dir/subdir/filename), and the :h takes just the "head" of that path, removing
the filename to leave the path of the intended directory (dir/subdir). The call to Vim’s built-in
mkdir () then takes this directory path and creates all the interim directories along it (as requested
by the second argument, "p").

Realistically, though, most Vim users would be more likely to simply escape to the shell to build the
necessary directories. For example:

iwrite

"dir/subdir/filename" E212: Can't open file for writing.
;! mkdir -p dir/subdir/

‘write

Either way, it's a hassle. If you're eventually going to have to create the missing directory anyway,
why not have Vim notice up-front that it doesn’t exist, and simply create it for you before you even
start? That way, you'll never encounter the obscure [New DIRECTORY] hint; nor will your workflow be
later interrupted by an equally mysterious E212 error.

To have Vim take care of prebuilding non-existent directories, you could hook a handler into the
BufNewFile event, which is queued whenever you start to edit a file that does not yet exist. Listing
17 shows the code you would add to your .vimrc file to make this work.

Listing 17. Unconditionally autocreating non-existent directories

augroup AutoMkdir

autocmd!

autocmd BufNewFile * :call EnsureDirExists()
augroup END
function! EnsureDirExists ()

let required_dir = expand("%:h")

if !isdirectory(required_dir)

call mkdir(required_dir, 'p')

endif

endfunction

The AutoMkdir group sets up a single autocommand for BufNewFile events on any kind of

file, calling the EnsureDirExists() function whenever a new file is edited. EnsureDirExists()
first determines the directory being requested by expanding the "head"of the current filepath:
expand("%:h"). It then uses the built-in isdirectory() function to check whether the requested
directory exists. If not, it attempts to create the directory using Vim’s built-in mkdir ().

Note that, if the mkdir () call can’t create the requested directory for any reason, it will produce a
slightly more precise and informative error message:

E739: Cannot create directory: dir/subdir

Scripting the Vim editor, Part 5: Event-driven scripting and Page 13 of 18
automation

developerWorks® ibm.com/developerWorks/

Conjuring directories more carefully

The only problem with this solution is that, occasionally, autocreating non-existent subdirectories is
exactly the wrong thing to do. For example, suppose you requested the following:

> vim /share/sites/corporate/root/.htaccess

You had intended to create a new access control file in the already existing subdirectory /share/
corporate/website/root/. Except, of course, because you got the path wrong, what you actually
did was create a new access control file in the formerly non-existent subdirectory /share/website/
corporate/root/. And because that happened automatically, with no warnings of any kind, you
might not even realize the mistake. At least, not until the misapplied access control precipitates
some online disaster.

To guard against errors like this, you might prefer that Vim be a little less helpful in autocreating
missing directories. Listing 18 shows a more elaborate version of EnsurebirExists(), which

still detects missing directories but now asks the user what to do about them. Note that the
autocommand set-up is exactly the same as in Listing 17; only the Ensurebirexists() function has
changed.

Listing 18. Conditionally autocreating non-existent directories

augroup AutoMkdir
autocmd!
autocmd BufNewFile * :call EnsureDirExists()
augroup END
function! EnsureDirExists ()
let required_dir = expand("%:h")
if l!isdirectory(required_dir)
call AskQuit("Directory '" . required_dir . "' doesn't exist.", "&Create it?")

try
call mkdir(required_dir, 'p')
catch
call AskQuit("Can't create '" . required_dir . "'", "&Continue anyway?")
endtry
endif
endfunction

function! AskQuit (msg, proposed_action)
if confirm(a:msg, "&Quit?\n" . a:proposed_action) == 1
exit
endif
endfunction

In this version of the function, EnsurebirExists() locates the required directory and detects
whether it exists, exactly as before. However, if the directory is missing, EnsurebDirExists() now
calls a helper function: AskQuit (). This function uses the built-in confirm() function to inquire
whether you want to exit the session or autocreate the directory. "Quit?" is presented as the first
option, which also makes it the default if you just hit <ENTER>.

If you do select the "Quit?"option, the helper function immediately terminates the Vim session.
Otherwise, the helper function simply returns. In that case, EnsureDirExists() continues to
execute, and attempts to call mkdir().

Scripting the Vim editor, Part 5: Event-driven scripting and Page 14 of 18
automation

ibm.com/developerWorks/ developerWorks®

Note, however, that the call to mkdir () is now inside a try. ..endtry construct. This is -- as you
might expect -- an exception handler, which will now catch the E739 error that is thrown if mkdir ()
is unable to create the requested directory.

When that error is thrown, the catch block will intercept it and will call AskQuit () again, informing
you that the directory could not be created, and asking whether you still want to continue. For more
details on Vim’s extensive exception handling mechanisms see: :help exception-handling.

The overall effect of this second version of EnsurebirExists() is to highlight the non-existent
directory but require you to explicitly request that it be created (by typing a single ‘c’ when
prompted to). If the directory cannot be created, you are again warned and given the option of
continuing with the session anyway (again, by typing a single 'c¢' when asked). This also makes it
trivially easy to escape from a mistaken edit (simply by hitting <ENTER> to select the default "Quit?"
option at either prompt).

Of course, you might prefer that continuing was the default, in which case, you would just change
the first line of AskQuit () to:

if confirm(a:msg, a:proposed_action . "\n&Quit?") == 2

In this case the proposed action would be the first alternative, and hence the default behaviour.
Note that "Quit?" is now the second alternative, so the response now has to be compared against
the value 2.

Looking ahead

Autocommands can save you a great deal of effort and error by automating repetitive actions that
you would otherwise have to perform yourself. A productive way to get started is to take a mental
step back as you edit and watch for repetitive patterns of usage that might be suitably automated
using Vim'’s event-handling mechanisms. Scripting those patterns into autocommands may require
some extra work up front, but the automated actions will repay your investment every day. By
automating everyday actions you’ll save time and effort, avoid errors, smooth your workflow,
eliminate trivial stressors, and thereby improve your productivity.

Though your autocommands will probably start out as simple single-line automations, you may
soon find yourself redesigning and elaborating them, as you think of better ways to have Vim do
more of your grunt work. In this fashion, your event handlers can grow progressively smarter,
safer, and more perfectly adapted to the way you want to work.

As Vim scripts like these become more complex, however, you also will need better tools

to manage them. Adding 10 or 20 lines to your .vimrc every time you devise a clever new
keymapping or autocommand will eventually produce a configuration file that is several thousand
lines long ... and utterly unmaintainable.

So, in the next article in this series we’ll explore Vim’s simple plug-in architecture, which allows
you to factor out parts of your .vimrc and isolate them in separate modules. We'll look at how that

Scripting the Vim editor, Part 5: Event-driven scripting and Page 15 of 18
automation

developerWorks® ibm.com/developerWorks/

plug-in system works by developing a standalone module that ameliorates some of the horrors of
working with XML.

Scripting the Vim editor, Part 5: Event-driven scripting and Page 16 of 18
automation

ibm.com/developerWorks/ developerWorks®

Resources

Learn

Start learning about Vimscript, the embedded language for extending the Vim editor,
with the first article in this series: "Scripting the Vim editor, Part 1: Variables, values, and
expressions"” (developerWorks, May 2009).
See the following resources to continue learning about the Vim editor and its many
commands:

* The Vim homepage
The online book A Byte of Vim
Various hardcopy books on Vim
* Vim's own manual
Steve Oualline's Vim Cookbook
For more extensive examples of Vim scripting, see:

* The Vim Tips wiki

* The Vimscript archive
In the developerWorks Linux zone, find hundreds of articles, tutorials, discussion forums, and
a wealth other resources for Linux developers and administrators.
Stay current with developerWorks technical events and webcasts focused on a variety of IBM
products and IT industry topics.
Attend a free developerWorks Live! briefing to get up-to-speed quickly on IBM products and
tools as well as IT industry trends.
Watch developerWorks on-demand demos ranging from product installation and setup demos
for beginners, to advanced functionality for experienced developers.
Follow developerWorks on Twitter.

Get products and technologies

Start at the Vim distributions downloads page to upgrade to the latest version of Vim for your
platform.

Evaluate IBM products in the way that suits you best: Download a product trial, try a product
online, use a product in a cloud environment, or spend a few hours in the SOA Sandbox
learning how to implement Service Oriented Architecture efficiently.

Discuss

Get involved in the My developerWorks community. Connect with other developerWorks
users while exploring the developer-driven blogs, forums, groups, and wikis.

Scripting the Vim editor, Part 5: Event-driven scripting and Page 17 of 18
automation

http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.ibm.com/developerworks/linux/library/l-vim-script-1/index.html
http://www.vim.org/
http://www.swaroopch.com/notes/Vim
http://iccf-holland.org/click5.html
http://vimdoc.sourceforge.net/
http://www.oualline.com/vim-cook.html
http://vim.wikia.com/
http://vim.sourceforge.net/
http://www.ibm.com/developerworks/linux/index.html
http://www.ibm.com/developerworks/offers/techbriefings/events.html
http://www.ibm.com/developerworks/offers/techbriefings/index.html
http://www.ibm.com/developerworks/offers/lp/demos/index.html
http://www.twitter.com/developerworks/
http://www.vim.org/download.php
http://www.ibm.com/developerworks/downloads/index.html
http://www.ibm.com/developerworks/downloads/soasandbox/index.html
http://www.ibm.com/developerworks/community

developerWorks® ibm.com/developerWorks/

About the author

Damian Conway, Dr.

Damian Conway is an Adjunct Associate Professor of Computer Science at Monash
University, Australia, and CEO of Thoughtstream, an international IT training
company. He has been a daily vi user for well over a quarter of a century, and there
. now seems very little hope he will ever conquer the addiction.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Scripting the Vim editor, Part 5: Event-driven scripting and Page 18 of 18
automation

http://damian.conway.org/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Vim’s event model
	Event handling with autocommands
	Universal and single-file autocommands
	Autocommand groups
	Deactivating autocommands
	Some practical examples
	Managing simultaneous edits
	Autoformatting code consistently
	Opportunistic code autoformatting
	Timestamping files
	Table-driven timestamps
	Filename-driven timestamps
	Conjuring directories
	Conjuring directories more carefully
	Looking ahead
	Resources
	About the author
	Trademarks

